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Many factors motivate consideration of B-splines as basis functions for solving
partial differential equations. These are arbitrary orders of accuracy and high re-
solving powers similar to those of compact schemes. Furthermore, if one uses a
Galerkin scheme one gets, in addition to conservation of the discretized quantities,
conservation of quadratic invariants such as energy. This work develops another
property, namely, the ability to treat semi-structured embedded or zonal meshes for
two-dimensional geometries. This can drastically reduce the number of grid points
in many applications. An algorithm is presented for constructing a global spline ba-
sis that automatically has— 1 continuous derivatives at mesh-block boundaries as
everywhere else (hedds the polynomial degree). The basis functions are simply suit-
able products of one-dimensional B-splines. Both integer and noninteger refinement
ratios are allowed across mesh blocks. Finally, test cases for linear scalar equations
such as the Poisson and advection equation are presemieshs Academic Press

1. INTRODUCTION

When gradients become large in a certain direction, structured meshes allow ol
cluster grid lines. This is inefficient if the regions of high gradient are local in the ot
directions. For instance in a turbulent boundary layer, streamwise gradients are large
to the wall but small away from the wall. Considerable savings can be obtained by usin
semi-structured approach of embedded meshes for a domain divided into blocks or
within each of which the mesh is regular.

In a previous paper, Kravchenlat al. [1] developed a technique for achieving “one
dimensional” mesh embedding for B-splines. “One-dimensional” refers to the fact
mesh zones were slices which spanned the domain in the other two directions. In parti
Fourier expansions were used in the directions parallel to the wall and B-splines were
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in the wall-normal direction. The present work develops a technique for two-dimensiol
embedding with B-splines. Specifically, an algorithm is provided for generating a spli
basis, where the domain is partitioned into arbitrary rectangles. The basis automatic
has the same high degree of continuiBf(*, whered is the polynomial degree) at zonal
boundaries as everywhere else. Refinement ratios between mesh blocks are not rest
to being integer. The basis may then be used to form differential operators using a Gale
or collocation scheme.

Let us briefly sketch where the B-spline technique lies in relation to other schemes.

(i) Thereis a strong similarity in the 1D periodic case betweereadompact schemes
(Lele [2]) and schemes resulting from B-splines. Swartz and Wendroff [3] have shown t
both have higher resolving power than an explicit central difference scheme of the sz
order. We expect that resolving power will be good even in the nonperiodic case and v
embedding. It should be noted that for the same matrix bandwidtte S&tEmes have a
little better resolving power than Galerkin B-spline schemes (see Table | in Ref. [3]).

(i) The desired global order of accuracy is arbitrary (an input parameter).

(iif) For nonperiodic problems, compact schemes require formulation of separate bou
ary schemes which are not required for B-splines. However, compact schemes employ
a series of 1D matrix inversions and are therefore cheaper.

(iv) When a Galerkin scheme is applied to a conservation equation, the corresponc
guantities (such as mass and momentum) are conserved in any subregion of the do
where unity is exactly representable (which is the case for splines). By “conserved”
mean that the rate of change of the total reduces to consistent boundary fluxes. For fi
difference or finite volume methods “simultaneous achievement of both conservation (ac
mesh blocks) and accuracy is very difficult and even impossible in most cases” accorc
to Kallinderis [5]. In many such methods the order of accuracy drops at mesh interfac
Such schemes often update each zone separately and interpolate zone boundary inforn
in a separate step. This requires down-wind differencing at some interfaces which cal
destabilizing. Such procedures are not needed here but the price to pay is matrix invers
A further advantage of the Galerkin scheme is conservation of quadratic invariants (suc
kinetic energy forincompressible flow in the inviscid limit). This protects the scheme agail
nonlinear instability (“aliasing”). It also makes the scheme more robust for it produce:
sure indicator of lack of resolution, namely, energy accumulation at small scales. For fin
differences, even for regular meshes, conservation of energy has been achieved only fc
second-order staggered “pressure” scheme.

(v) Inafinite element method, the solution within each element is represented in tel
of nodal values located within or on the boundary of the element. This representatiol
constructed in such a way that at an element edge the solution depends only on the r
values along the edge. ThGS$ continuity across elements is obtained along the entire edg
With a B-spline basis, while nodal values are never explicitly employed in the representati
the dependence of the representation on nodal values is g@fbalcontinuity is obtained
across elements (by “element” we mean the region of support of each piece of the piece
polynomial). The resolving power of B-splines is a direct result of this higher continuit
In Hermite finite elements, continuity of higher derivatives is obtained at the cost of havi
nodal derivatives as additional degrees of freedom. For instance in 1D, using nodal va
and derivatives as degrees of freedom prod@esubics. By contrast, B-splines give a
more refined space, namedyf cubics with the number of degrees of freedom still equal tc
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the number of intervals (plus 3). Matrix structure and bandwidth for a Galerkin formulat
are also quite different. Cubi€® (Hermite) finite elements have between four and si
nonzero entries per row, while cubic B-splines produce a heptadiagonal matrix with al
half as many rows. What is gained by finite elements is geometric flexibility. In the pres
method, only a single mapping of the domain from cartesian coordinates is permitted.

(vi) The h-p finite element method (e.g., Devlat al. [4]) is specifically designed to
treat embedded meshes. The modift@rrefers to local spatial refinement: each side of a
element can have more than one element on the other side, thus leading to “hanging nc
i.e. nodes which are not shared by all their neighboring elements. To ma@ftaontinuity
across elements in this arrangement requires that the solution value at the hanging not
constrained. The modifierd” refers to the fact that an element may neighbor an eleme
having different polynomial order. Agal®® continuity across elements requires constrain
on some nodal values. The present method achieves orfiyftirectionality but with higher
continuity.

In summary, it may be said that the B-spline method lies somewhere between finite
ment and spectral methods in both resolving power and geometric and gridding flexibi

The outline of this paper is as follows. Section 2 provides a very brief background
one-dimensional B-splines. Section 3 presents an algorithm for choosing an appropria
of two-dimensional functions and Section 4 presents test cases for linear scalar opere

2. BACKGROUND ON ONE-DIMENSIONAL B-SPLINES

For the purposes of this work, a one-dimensional spline is defined to be a polynomi
degred in each interval witld — 1 continuous derivatives across interval boundaries. Ti
boundaries of the intervals are called knot pointsdtiederivative of the spline has a jump
at the knot points in the interior of the domain.

A B-splineis simply defined as a spline which has support over the minimum numl
of intervals and which is normalized. By equating the number of known continuity a
normalization conditions to the number of unknown coefficients one finds that the nun
of minimum intervals igl 4+ 1. This is enough information to determine the B-spline whic
has support in the set of intervals. Quadratic B-splines have support over three inte
and Fig. 1 shows the set of quadratic B-splines for the knot points indicated biear
the boundary, the number of continuity conditions available drops and so does the nul
of intervals of support. To calculate the B-splines one does not have to actually solve

FIG. 1. Plot of one-dimensional quadratic B-splines on the set of knot points indicated Al functions,
except those near the boundary, have support over three intervals. Note: Line types are re-used for dif
functions.
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continuity conditions. Rather, one uses a recurrence relation given in de Boor [6, Chap.
to build up the functions from piecewise constant functions.

Above, the B-splines were merely defined as splines with minimum support. Wi
makes them useful for solving partial differential equations is the result, due to Curry ¢
Schoenberg (see de Boor [6]), that they forbaaisfor spline functions with the given knots.

3. FUNCTION SELECTION ALGORITHM FOR 2D MESH EMBEDDING

3.1. Mesh Definition

It is assumed that the computational domain is mapped to a rectangle.ifhe case
of a more general polygon with right angles (such as a backward-facing step) can pert
be treated along very similar lines, but this is not presently allowed. For convenience
without loss of generality, the user is required to specify the mesh in terms of sets of po
which are swept across certain intervals in order to produce mesh lines. For instanc
Fig. 2, the mesh lines are indicated by the solid lines. The horizontal lines of the mesh
be generated by sweeping the three sets pbints indicated bw across the& intervals
indicated. Similarly, the vertical lines can be generated by vertically sweeping the two <
of & points indicated by. Just as in the 1D case, where the interval boundaries are kr
points, we want mesh lines in the 2D case to represent knot lines, i.e., the lines norm:
which the selected functions (of degrégesay) have a jump in théth normal derivative.
Hence, we regard each set of points used to sweep out the mesh as being a knot set w
associated set of one-dimensional functions. Thefikstot set in Fig. 2 is the same as the
knot set shown in Fig. 1 and has the same associated functions.
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FIG. 2. Sketch to illustrate the function selection algorithm. All functions are quadratic B-splines and sp
three knot intervals.
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If every & knot set either contains, or is contained, by every atHerot set (and similarly
for n), we will say that the mesh is hierarchical. Figure 2 shows a nonhierarchical mesh
the same algorithm applies for both types of meshes.

It is assumed that the mesh thus specified by sweeping points produces closed
Suppose that a vertically swept poit“hangs” atns, i.e. fails to continue into the next
sweep. Then to ensure a closed oglishould be a knot point in thgknot set which sweeps
overég,, or begins or ends a sweep there.

As a preliminary, the algorithm breaks up the mesh into a set of blocks on each of whicl
mesh is regular. Forinstance, Fig. 2 has five blocks. This decomposition is not always ur
and should be performed to minimize block boundaries. In the present implementatic
provisional set of blocks is first created on the basis of the sweep intervals. Where pos:
blocks are then merged with neighbors to create larger blocks.

Below, an algorithm with variants is presented for selecting functions. The first one,
intersection procedure, does notallow functions that create extra knotlines not defined k
mesh. For noninteger refinementratios, this restriction would produce coarse functions ¢
block boundaries and therefore less constrained procedures are described in Section

3.2. Intersection Procedure

We want to choose a set of functioBg(&, n), n=1, 2,..., N that can represent piece-
wise polynomials of degre@ having knot lines that coincide with the mesh. We have r
formal proof that the procedure provides a complete basis. Bagh n) is constructed as
a product of one-dimensional B-splinds£)g(n), say. One may consider implementing ¢
brute-force algorithm in which all possible pairsgoéndy functions defined by the swept
knot sets are tried and those that create undersired knot lines are rejected. This proc
would not only be too costly, but it does not allow the choice of functions not defined
the given knot sets which, we shall see, come into play for nonhierarchical meshes.

Two-dimensional functions confined to each block are chagefiori; these are simply
the tensor product B-splines for a regular mesh. It remains to select functions that pene
multiple blocks. They are referred to as “spilling functions.” The procedure is to consi
every function, sayf (¢), on each sweep of theknot sets and to find suitable functions of
n as multipliers. The same procedure is repeated for ey&umction on each sweep of the
n knot sets. Constant reference is made to Fig. 2.

(1) First, one obtains theknot set from which multipliers foff (¢) will be chosen. The
&-support of f (£) will penetrate a certain range of sweep intervals ofithaot sets. For
instance the functiom\ penetrates sweeps 1 and 2 of thknot sets. To prevent creation
of new knot lines, we must choose multipliers from theersectionof the n knot sets
associated with the range of sweeps. We will call thisdmpatible knot seif f (£). For
instance in Fig. 2, the functioB (from the firsty knot set) is not a compatible multiplier for
Abecause the resulting product has additional knot lines indicated by the dashes. How
the functionC (from the intersection ofy knot sets 1 and 2js a compatible multiplier.
Note that if the knot sets involved in the intersection operation are hierarchical (i.e., €
set either contains, or is contained in, another) then the intersection operation just che
the coarsest of the sets. In general, however, the compatible knot set could turn out
one that was not used in the mesh definition.

At each zonal boundary there is a strip within the region of fine resolution into which'
coarse functions penetrate. The width of this strigl imtervals normal to the boundary.
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For instanceA is the left-most function irf knot set number 1 that will multiply coarse
functions inn. Thus functions (such a& x C) that have they knot spacing of the coarse
block penetrate tw@ intervals of the fine block. In general the number of intervals o
penetration is the polynomial degrek,

(2) Onlythose functionsin the compatible knot set that have supportin the sweep intel
of the knot set off (¢) are relevant; we refer to these@smpatible functions

(3) Next, we further limit the compatible functions in order to prevent block-confine
functions, which have been chosapriori, from being selected. The supportbf¢) x its
n sweep interval is either confined to a block or it is not.

(a) Ifitis confined to a block then only those compatible functions that cross the blo
boundaries im are allowed.

(b) Ifitis not confined to a block (as is the case for functitgy then all compatible
functions are allowed.

(4) In order to prevent the selection of 2D functions with additional knot lines, it i
necessary that the compatibility beutual For instanceD is a compatible multiplier ofA,
but A is not a compatible multiplier ob. This is because functiob penetrates sweeps 1
and 2 of thet knot sets but the knots of functiof do not belong to their intersection. In
particular, the following test is applied: do the knotsf@t) belong to the compatible knot
set ofg(n)?

The mutual compatibility test needs to be relaxed at nonhierarchical corners. Consi
for instance, the region ne& where two fine regions meet at a corner. The only function
that have support at the corn@rthat do not result in additional knot lines are functions
such asE x D, neither of which belongs to any knot set used in the definition of the mes
Since only functions on the knot sets used in the mesh definition seek suitable multipli
such a product would never be chosen. This is overcome by either of two modificatic
denoted as M1 and M2. If the mutual compatibility test fails for a prospective 2D functic
containing a block corneandtheg(n) does not belong to any of theknot sets penetrated
by the support off (¢) then: (M1)g(n) is chosen, resulting in the creation of new knot
lines; or (M2) The product afj(n) and all the functions on the compatible knot setjof)
that have support at the corner are chosen. In this case no new knot lines are created |
context of the intersection procedure. The unmodified procedure is denoted as MO.

(5) Finally, a check is made that a 2D function selected is unique.

3.3. Less Constrained Procedures

It may be desirable to change resolution gradually, in a noninteger fashion, as is the
in Fig. 2 between the left and right halves of the mesh. If compatible multipliers for functic
F were chosen according to the intersection procedure, the very coarse fuBationld
result (its knots are indicated ly). To avoid this, one can dispense with the requiremer
that no new knot lines be created. Instead of using the intersection operation one car
any other operation which provides sufficiently good resolution along the block bounde
One simple way of doing this is to use the “densest,” instead of the intersection operat
to determine the compatible knot set. In other words choose the set with the most knot
more logical choice is to assemble the compatible knot set by taking, within each swe
the set which has the most points within that sweep. For example, the compatible knot
for function F would be formed by taking points from the rightmasitnot set for the first
vertical sweep interval and the middjeknot set within the second vertical sweep interval.
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We refer to this as the “densest by sweep (DS)” operation. In this case a function ddich
would be a valid multiplier foi= and their product would create the additional knot line
indicated by dots. The functioH is also mutually compatible witk because the knots
of F belong to the (singled knot set penetrated biyl. The mutual compatibility test was
needed in the intersection algorithm to prevent additional knot lines. Here it is heces
to prevent the selection of multiple types of products in the same region. For insta
functionC would seek multipliers at some point. One sees Ehatould not be a mutually
compatible function because the knotoflo not belong to the DS of the vertical knot set:
on whichF has support. This is rightly so becausex H is the type of product we have
selected for this region.

In the tests that follow the algorithm used will be denoted by a prefix: | (intersectio
D (densest), or DS (densest on a sweep by sweep basis). This will be followed by a s
(MO, M1, or M2) to denote the modification to the mutual compatibility test.

Algorithm summary. Perhaps the following summary will aid the reader in holding th
algorithm firmly in mind. For everyg function on the knot sets, who§esupportx n sweep
interval is confined to a block, pick as multipliers only those mutually compatitections
which cross the block boundariessinsince the rest produce 2D functions confined to tk
block and have been chosatpriori. For ag function, whose supportx n sweep interval
is not confined to a block, choose as multipliaismutually compatible functions. Repeat
the procedure for alj functions defined by the given knot sets. If required, relax the test
mutual compatibility according to M1 or M2.

3.4. Matrix Structure of Linear Operators

In a Galerkin (weighted residual) method, linear operators (such as the Laplacian
advection operator in the present examples) give rise to matrices of the general form

(L1Bm, L2By) = /Eleﬁandx dy mn=212...,N, Q)

whereL£; andL; represent linear differential operators. Similarly, operators with a quadre
nonlinearity give rise to integrals of triple products. All matrices need be computed or
Since differentiation does not alter the support region of a function, all linear opera
produce matrices with the same structure that depends on which pairs of functions ove
The template for this structure is constructed once. Pairs of functions confined to «
block overlap in a simple way and produce the structured part of the matrix; thag)?
diagonals for a symmetric operator affdl + 1)2 diagonals for a nonsymmetric operator
Spilling and block-confined functions that overlap produce scattered matrix elements, ¢
two overlapping spilling functions. With the template in hand, matrix elements are compt
using Gauss quadrature with enough points to ensure exact integrals.

The collocation approach can also be used; the peak location of each function
convenient choice for the collocation points. The matrix for fitting a spline to data giver
the collocation points ha@ + 1)2 bands for the structured part of the matrix.

Matrix equations are solved using the conjugate gradient routines from the SLAP libr
which requires that the left-hand-side matrix multiply a vector in each iteration. All t
tests reported here used the matrix diagonal as the preconditioner. Incomplete Cho
decomposition was also tried as a preconditioner. It required a factor of two to three fe
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iterations, but the overall CPU time for matrix inversion was a little higher, due to the cc
of applying the preconditioner at each iteration (even if we leave out the cost of the inil
factorization).

It is important to make the matrix by vector multiplication efficient, since it is applie
in each iteration. The multiplication of each diagonal can be performed in a vector lo
The template for storing the scattered elements ensures that their multiplication car
accomplished in a certain number of vector multiplies. This number is the maximum num
of scattered elements in a row. The template is rearranged to avoid the most obvious |
conflict, namely that of accessing the same element of the multiplying or resultant vec
within a certain number of CPU clocks.

4. TEST CASES
First consider scalar advection at’46 thex-axis,
Ut+Cuy = Ui +C(ux+uy) =0 onthe unitsquare, (2)
wherex’ is a coordinate at 430 thex-axis. The initial profile is a Gaussian pulse,
_ _ _X/Z/OZ
ux,y,t=0=e , @)

with o = 0.15. The advection speedl,is set to unity. The boundary condition imposedign
atthe in-flow (left and bottom) boundaries corresponds to uniform propagation of a Gaus:
pulse. Henceforth, we use as weight functions those B-spline8say y), m=1,2, ...,

No, which vanish where boundary conditions are applied and represent the solution as

No N
UGG Y D = 8B, Y) + D> an)Ba(x, y), 4
n=1 n=Ny+1

where B-splines having nonzero value at the boundary have been isolated in the se
term. Denoting the inner product &s-), the weak formulation reads

No N N
Z(Bm, Bn)an = _CZ(Bmv Bn,x + Bn,y)an - Z (Bma Bn)anv m=12 ..., N,
n=1 n=1 n=Ny+1

®)

where the coefficientsy,, in the last term are known from projecting the boundary spec
ification of u;. In order to make time integration errors smaller than spatial discretiz
tion errors, this equation is advanced with a sixth-order Runge—Kutta scheme with cf
CAt/AXmin=0.5. Figure 3a shows contours of local error obtained using cubic splines a
algorithm DMO for a noninteger refinement ratio gf45 At the instant shown, the pulse
has propagated four half-widths and the peak of the pulse lies on the diagonal of the
block.

The error is perfectly symmetric about the°4e, smooth, without any peculiarities
at the mesh interface, and attains a maximum of 0.65%, even on the rather coarse n
Figure 3b is the result of a convergence test using quadratic and cubic splines. Aside frc
little curvature and flattening for the cubic case, the approximation—theoretic converge
rate,d + 1 (e.g., see Strang [7, p. 62]) is obtained.
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Next consider the Poisson equation for the streamfunction given the voriicity,
V2 (X, y) = —w(X,y) on the unit squar€ with ¥ = g(s) on 9. (6)
In order to eliminate unknown boundary terms in the weak formulation and to impose 1

Dirichlet boundary condition strongly we again use as weight functions all the B-splin
which vanish at the boundary. The weak formulation reads

No N
> Ca(VBn. VB = (Bnw)— Y (VBn VBy), m=12....No. (7)
n=1 n=Noy+1

The test vorticity field in the present example consists of three axisymmetric Gaussi
of alternating sign and graded intensity superposed with images to make the left and bo
boundaries impermeable walls:

3

(X, Y)—Zii- —r5ij /05):

p=
8
p|J ( pr)z (y - Jyp)z

The outer sum in (7) is over the three vortices and the two inner sums are over the f
images of each vortex. The strengths of the vortices were chosemtobi, ', = —9, and
I's=12. The locations and core sizes were setite y; =01 =0.5, X, = Yo =0, =0.125,
andxs = y3 =03 =0.0625. The exact streamfunction resulting from each vortex is easi
obtained and the sum is

VX, y) = Z Z Z er lOQrplj - Ei(_rgij/ag)]’ ©)

p=1li=-1j=—

where Ei is the exponential integral. In the numerical solution the conditiog O is
imposed on the left and bottom walls and the exact solution is imposed on the top and r
boundaries.

Figure 4a shows that even for the very coarse mesh, the agreement between the exa
numerical solutions is excellent (the intersection algorithm (IMO) with quadratic B-splin
was used). For comparison, the solution was also obtained for a uniform mesh ha
everywhere the mesh spacing of the finest block of the embedded mesh. The maxir
error occurs in the intense vortex near the corner and it has virtually the same value
the two meshes (compareand + in Fig. 4b; the error was sampled on a 51212 set of
points for both meshes).

The rest of the curves in Fig. 4b show that when the error is evaluated at the “me
points” (i.e., the intersection points of the knot lines), two of the norms converge at fou
order which is one order higher than the approximation theoretic result. This phenome
is called super-convergence and deserves a brief comment eE{8showed that in one-
dimension and with periodic boundary conditions, the Galerkin B-spline method exhik
super-convergence at the knot points. In particular for the heat equation the converge
rate is 21 while for the advection equation it isd2+ 2. Exact time integration is assumed
in both cases. The various numerical tests we performed indicated that super-converg
was practically nonexistent for two dimensions with nonperiodic boundary conditior
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FIG. 4. (a) Solution to the three-vortex Poisson equation sampled on & 100 grid. The actual mesh is
shown. Computed solutior — — —, negativeontours; , positive contours. Exact solutien:---, negative
contours — - —, positive contours. (b) Convergence for the three-vortex Poisson equation test. Error sampl
512x 512 points— - — [, maximum error for the embedded mesh- — +, maximum error for a uniform mesh
having the finest spacing of the embedded mesh. Error sampled at all the “mesh-points”: A—maximum
error (L, norm); — — O, r.m.s. error L, norm) — ———@, average of absolute errdr{norm);--.-.-- , reference
lines with slopes of-3 and—4.
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FIG.5. (a) Computational cost for the Poisson test. —S+-CPU seconds for matrix inversion; — — £
CPU seconds for setup of Laplacian matrix;--- A, CPU seconds for setup of right-hand-side vector; —
<, number of conjugate gradient iteratiort§,J. (b) Number of conjugate gradient iterations for different mesh
types: — — A, uniform mesh; ———+1, embedded mesh — — —-O, stretched nonembedded mesh.

Fig. 4b represents, indeed, an exceptional case. For the advection equation there w:
super-convergence even on a uniform mesh. For the Poisson equation on a uniform n
the odd-degree splines considered did not exhibit super-convergence, while among the ¢
degree splines only the quadratic functions displayed a rate consistent witle@lsoasult.
Quartics converged at sixth order, compared with fifth order for approximation theory &
the eighth order of Thoeg's result.

Figure 5 shows the computational cost for the Poisson test on a CRAY C90 sin
processor. The cases are the same as those shown in the convergence plot (Fig. 4b
convergence criterion supplied to the conjugate gradient routine was thatthe L-2 norm of
residual be 10'° times the L-2 norm of the right-hand side. In a time-dependent probler
the setup cost of the matrix, which is an order of magnitude larger than the cost of ma
inversion, would be amortized over the number of steps. For the left-most data point, 8
of the cost of computing the Laplacian matrix comes from the unstructured elements, €
though they constitute only 7% of the matrix. This is because their 1D integrals invol
products of B-splines from different knot sets and these integrals are computed as
arise. For the structured elements, however, each 1D integral involves B-splines from
same knot set, and B-spline values at quadrature points as well as 1D integrals ca
precomputed for each knot set.

In response to a referee, we determined whether there is a degradation in the conver
of the conjugate gradient method for an embedded mesh. Three types of meshes
compared: the embedded mesh of Fig. 4, a regular but nonuniform mesh obtainec
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eliminating the embedding (resulting in the mesh shown in Fig. 6b), and, finally, a unifc
mesh. Each mesh was successively refined and the number of iterations were plotted \
the number of degrees of freedomy(s). The result is shown in Fig. 5b. The number o
iterations rises asANj{,fz and A is largest for the nonuniform regular mesh, smallest f
the uniform mesh, with the embedded mesh lying between the two. CPU time was
investigated and a mechanism for degradation on a vector machine was uncovere
small meshes. Ablyos Wwas decreased, the cost of multiplying each nonzero matrix elem
increases for each mesh due to shortening vector-loop lengths. The embedded mesh |
shortest loops and for a rather small mesh W = 200, there is a factor of 2 degradation
over the uniform mesh.

In the advection test the local error had no peculiarities near the mesh interface. The !
is not true for the Poisson test. Figure 6a shows that the error reaches a maximum i
region of the intense vortex nearest the corner and diminishes away from it, as one w
expect. However, it increases again in the form of positive and negative layers alonc
interface. A regular mesh (without embedding; see Fig. 6b) but with the same chanc
spacingnormalto the interface as the embedded mesh gives similar features in the €
but the peak in the error at the mesh interface is a little smaller (70% of the value in
embedded mesh). In Fig. 6¢, normal spacing is kept uniform wailgentialresolution
changes. The pattern of the error near the interface resembles swords pointing norn
the interface with the positive peak near the interface being half the value in the orig
embedded mesh. Figure 6d shows that near the interface of interest, the two errors
nearly add to give the error in the original embedded mesh.

The final test is one of robustness: we consider a problem for which a uniform mes
optimal and study how much the resolving power degrades when the mesh is disloc
(as shown in Fig. 7b) and the embedding procedure is applied. A uniform mesh is opt
for problems in which the solution oscillates uniformly everywhere in the domain. T
eigenvalue problem for the Laplacian operator is one such problem:

VZy = xy on arectangle of unit width and heighwith 3v/dn = 0 on the boundary
(10)

The von Neumann boundary condition was chosen because it makes the boundary te
the weak formulation vanish. The squaié, of the height of the domain is chosen to be
irrational (h? = +/2) to avoid degenerate eigenvalues. The exact eigensolutions are

Amn = —2(M? + (n/h)?),  Ymn = cogmrx) cognry), (11)

The extent to which a numerical method is able reproduce the exact eigenvalues and ¢
functions is a test of its resolving power for the Laplace operator (with the given bounc
conditions) across all scales. We compare performance on a uniforri@0nterval mesh
(without embedding) with performance on the dislocated mesh shown in Fig. 7b.

To compute the error for each member in the set of numerical eigensolutions one n
to associate it with an exact eigensolution. Any procedure one uses to pair a nume
eigensolution with an exact one necessarily becomes arbitrary for the highly inacct
eigensolutions. The procedure we used was to evaluate each numerical eigenfunctiot
50 x 50 grid, normalize it to have a value of unity at the origin, and pair it with the close
(in the discrete L-2 sense) unpaired exact eigensolution. The pairing proceeded in orc
increasing numerical eigenvalue. To assess resolving power, the number of eigenvalue
eigenvectors which satisfy a given error tolerance for the two meshes are shown in Ta
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FIG. 6. Local error on three different meshes for the three-vortex Poisson equation test. In all plots, cont
min, max, inc= (—0.00475 0.00425 0.00050. This makes the lowest contour levetf.00025, rather than zero:
, positive values;:------ , Negative values. The error is evaluated on a:83@00 grid. (a) Mesh embedding
with abrupt changes in spacing normal and tangential to the mesh interfaces. (b) A nonembedded but nonun
mesh with abrupt changes in normal resolution only. (c) Mesh embedding with an abrupt change of spacing i
tangential direction in the region of interest. (d) The result of adding the error fields shown in (b) and (c).
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FIG. 6. Continued

For a tolerance of 0.01, the number of “good” eigensolutions is almost identical for the
meshes. The overhead of extra functions at the dislocationincreases the number of de
of freedom from 144 to 151. Therefore the ratio of good eigenvectors to the total nun
of degrees of freedom degrades by 5% for a tolerance of 0.01. For a tolerance of 0.1(
ratio degrades by 14%. Figure 7 plots the error in an eigenfunction whoseor degrades
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TABLE |
Number of Eigenvalues () and Eigenfunctions ) with Error
Less Than the Specified Tolerances

Mesh type 10% error tolerance 1% error tolerance  No. of degrees of freedom

Uniform n,=90 n,=63 n, =30 n,=22 144
Dislocated n, =93 n,=57 n;, =29 n,=22 151

Note Relative error is used for eigenvalués;error is used for eigenfunctions.

by 3% with embedding. This eigenfunction has three wavelengths over the domain in «
direction. Aside from the broken symmetry, the error along the dislocation is very sim
in the two meshes.

5. CONCLUDING REMARKS

A technique has been developed for achieving two-dimensional mesh embedding
B-splines as basis functions. The results of test cases are encouraging and work is und
to apply the technique to the incompressible Navier—Stokes equations for three-dimens
flow in two-dimensional curvilinear coordinates.

Since the cost of selecting functions and computing various matrices is incurred e
time the mesh changes, the present method would not be efficient for applications re
ing frequent adaptive remeshing. The application we have in mind, namely statistic
stationary turbulence, should not require frequent remeshing. For continuous adaptz
an alternate approach to constructing the basis that allows greater flexibility in “editi
the degrees of freedom and matrices should be pursued. One can look to spline wa
(e.g., Chui and Wang [9]), but the usually imposed requirement of orthogonality result
wavelets of wide support. Szeliski and Shum [10, p. 1203] state that they have constrt
a nonorthogonal form of spline wavelet with smaller support but no explicit formulas
provided. Forsey and Bartels [11], in the context of surface modeling, exploit the fact th
coarse B-spline can be rewritten as a sum of finer B-splines and use this for local refiner
Gornowicz [12], in the context of motion analysis of images (where a certain functio
has to be minimized) writes the solution as a summation over resolution levels, kee
all B-splines at each resolution level. The maximum resolution level is varied in diff
ent regions of space. As it stands, this approach retains redundant information unlik
wavelet representation, where each wavelet space contains only the additional inform
of arefinement. Using such ideas, an efficient and continuously adapting flow solver ¢
be developed.
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